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The problem of an electron in a finite-range constant electric field is treated; energy levels
and eigenfunctions are calculated for the “empty crystal” and for a Mathieu-type model crys-
tal. It is shown that the addition of boundary conditions may change the solution drastically.
The influence of different boundary conditions on the eigenvalues and eigenfunctions is dis-
cussed and it is found that the former are relatively insensitive while the latter are sensitive

to a change in boundary conditions.

The result for the eigenvalues is shown to be consistent
with an extension of the Born-Ledderman theorem to electronic states in finite crystals.

The

effective-mass approximation is shown to hold for this model even for moderate fields and use
is made of it to explain the complex behavior of the wave functions nearthe bands’ edges. All
in all, a clear detailed picture, although limited in scope, is presented of properties of elec-
trons in crystals under the influence of external electric fields.

I. INTRODUCTION

For many years the fundamental problem of a
crystal in an external electric field has attracted
much attention.! Some features of the issue, e.g.,
the behavior of the optical absorption in the pres-
ence of the field, !~® are still in dispute. For this
effect, instead of a sharp absorption edge above
the frequency connected with the band gap in the
absence of the field, one gets an “exponential tail”
of absorption in longer wavelengths, or smaller
energies (the Franz-Keldish effect). Superposed on
this absorption curve is a structure hitherto ex-
plained to be due to a “Stark ladder” effect. But
the existence of the Stark ladder*® and the details
of the Franz-Keldish’ effect are subjects far from
being agreed upon. Several pictures have been sug-
gested to describe this problem, but all of them
treat the infinite crystal case in an infinite-range
electric field.

In this paper we show how the introduction of
boundaries into the problem influences the results
obtained, bearing in mind that in physical reality
the crystal’s range and the range of the electric
field are finite. We limit ourselves to the case of
zero current and we treat the one-dimensional case
as it contains the essential physical problem.

In Sec. II we treat analytically the case of an
empty lattice in an electric field with appropriate
boundary conditions. The energy eigenvalues and
the eigenfunctions are calculated. For high energies
the solutions have the known correct simple poten-
tial-well behavior. The applicability of this model
to the case of a crystal in an applied electric field

is discussed.

However, to get a more accurate picture (includ-
ing the periodic potential and its effect), we have
treated a model—a one-dimensional Mathieu-type
finite crystal in an electric field—which incorporates
enough real crystal properties to give us a clear
picture of the main features, albeit only numerical-
ly. Changes in the energy distribution and in the
eigenfunctions in the presence of the field are cov-
ered in detail, as well as side issues dealing with
the finiteness of the crystal and with the influence
of the boundary conditions. In Sec. III the problem
is stated and discussed, and the different types of
boundary conditions with which we deal are com-
pared, using an extension of the Born-Ledderman
(BL) theorem (Appendix D). The picture of the be-
havior of the crystal in the presence of the field is
clarified using the numerical results. The decrease
of the forbidden gap between two energy bands is
shown as a function of the field. No Stark ladder is
obtained in the energy spectrum. The two limiting
cases of zero field and a strong field are considered
and are shown to agree with the expected results.
Wave functions for several field values are com-
pared. In Sec. IV it is shown that for this finite
model the effective-mass approximation (EMA) is
really a very good approximation even for relative-
ly high fields.

II. EMPTY LATTICE

Let us begin by solving the case of a semifree
electron in an electric field; i.e., we take a poten-
tial well to represent the crystal (Fig. 1). The im-
portant point is the finite range of this well. The
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FIG. 1. Empty-lattice infinite-well potential in the
presence of a finite-range electric field vs distance in
the crystal. [ is the distance where the energy level €,
equals the potential (turning point).

time-independent Schrodinger equation for this
problem is

75

-—V +eEx>\I/=€‘II, (2.1)
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where e is the electron charge, € is the energy
eigenvalue, and E is the magnitude of the electric
field.

For the infinite-range case, i.e., for the case
where x isinthedomain (- =, + ), a solutionto (2.1)
was given® subject to the usual boundary conditions,
namely, that the function not diverge for + . The
way to achieve this solution is to Fourier transform
(2.1) and to obtain the solution in momentum space.
The one solution then is the Airy function Ai(Z),
where

Z=al'%%-¢/a%'?; a,=2meE/n%; €=2me/R?.
(2.2)

A solution exists for every value of the energy,
from €=— = to € =+,

On the other hand, for the finite case, when the
crystal goes, say, from 0 to L, the situation is
completely different. The general solution of (2.1)
can be given as a linear combination of fwo inde-
pendent functions Ai(Z) and Bi(Z). The Bi solution
cannot be discarded! for the finite case. Here
the boundary conditions determine a discrete set
of allowed energy levels with a lower bound, which
can be taken as the zero of the energy. Consider
as boundary conditions the three types: (i) potential
well with infinite walls; (ii) potential well with
finite walls; (iii) periodic boundary condition. We
shall elaborate here on the first case, as the other
cases differ only in numerical detail, except of
course!! for the possibility of a degeneracy for the
third case.

For the first case, the condition for the function
is

v(0)=¥(L)=0. (2.3)

The general solution of Eq. (2.1), up to a normal-
ization constant, is

¥(x)= aAi(Z)+B8Bi(2Z) . (2.4)
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Equation (2. 3) implies (by solution of the secular
equation) the condition

Ai( - a7?/28) Bi(al/?L - a;%/%8)

=Bi(-a?/??) Ai(al/’L - a?/3%) . (2.5)
Equation (2. 5) is the equation for the eigenvalues
of the energy, which are discrete for this case;

it can be solved numerically. We shall here only
indicate our results for limiting cases, in which
analytic results exist.

Case (a): € <eEL, i.e., low-lying levels for high
voltage diffevences on the crystal. In this case we
neglect €a;?’® with respect to /L. If we also
assume a}/°L > 1 (for ar electric field of 1 V/cm,
L should be greater than 10-° cm for this condition
to be satisfied), we get from (2.5), using the as-
ymptotic forms for the Airy functions, 12 the ap-
proximate condition

2exp(£al/2L%/2) Ai( - a7?/%2) = Bi( - of?/%%) .

The exponential on the left-hand side is much larger
(for the above-mentioned condition) than

Bi(- @;2/2€) which is oscillatory, '? so the condition
for the eigenvalues resolves approximately to

Ai(-a?’?®)=0. (2.6)
From the table of zeros of the Airy function (p. 478
in Ref. 12) we get (Fig. 2) the low-lying energy
levels for this case. As should be anticipated the
results here agree with the semiinfinite case (see,
e.g., Ref. 13). For the levels further up [but still
with condition (a)], namely, for a;*/*&> 1 (which
happens for an electric field of 1 V/cm for € > 10
eV and for an electric field of 10° V/cm for € >0.02
eV), the result can be given by the asymptotic ex-
pressionlz for Ai and to first approximation,

sin[2 (a?/%€)*/%2+17]=0

or
£
af/! First eigenvalues
o
]
o
o
o
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[¢]
o
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o
1 1
0= 5 10 n
FIG. 2. First ten eigenvalues for the empty lattice

in a constant electric field, given by the nodes g, of
Ai(x). The quantity 6'/01?/3 is in nondimensional units;
see Eq. (2.7).
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G=lemay-5)F". 2.7) sin(g+§n_)cos(§,+éw)+cl(zl~— %)cos(cl—w
Now, for n>>1, this becomes !

€, ~CEZ2/3%2/3 (2.8) =cos(+3m)sin(,+5m),  (2.13)
where where

C=3% (n*3me/m" /273 £=2(a?’?)%? =% (@a/®-al/?L)¥2,
A simple physical way to get the dependence of ¢, and C,=15/216.
on # and E is given in Appendix A. The second term on the left-hand side in Eq.

The energy difference between levels decreases (2.13) is of the order of (¢ - :1)/§2 and can be ne-

with . From Eq. (2.8), we have glected. *

€ -, =2C E£2/3,-1/3 (2.9) Thus we get in this case‘approximately

tan(¢ +37)=tan(t,+37)  or &y—C=nm.

so that the “density of states” is approximately
an/Ae=(3/2C) '3/ E?'3) . (2.10)

This result can be understood qualitatively as fol-
lows:

We are looking for solutions vanishing for x=0.
The oscillatory behavior of the functions exists
only for x<1 (Fig. 1), so if we start from x=1 with
approximately the same amplitude, and going to
the left, we want the function to vanish for x=0, we
get the following: (i) The smaller the E, the faster
is the change in /, as we go up with energy, so the
easier it is to put another oscillation period into
the wave function. (ii) For larger », the number
of periods in [ gets larger, and the period of the
wave function gets smaller so it is again easier to
add one more period.

To get the eigenfunctions for this case we need
(except for normalization) the ratio 8/a. Now,
according to (2.3), we must have

aAi(a}/3L -&/a?/% +BBila}/*L -2/d3'%=0
or, with condition (a),

a Ai(ed/®L)+BBi(al’?L)=0.

Thus, in this range, the ratio does not depend

on the energy, and is given by
B __ Aile}’L) . 4.1/3713/2
o m~ zexp[ 3(011 L) ], (2.11)
where use has again been made of the asymptotic
formulas for Ai and Bi for large a}/3L. Uptoa

normalization constant (which is calculated in Ap-
pendix B), we have

¥,(x)=Ai(al’?L -,/ a3'?)

- zexp[ - (o) °LY*]Bi0}°L - &, /0}"?) .
(2.12)
Case (b): € > eEL verysmall electricfield, nearly
free electvons. Using the asymptotic expressions

(10. 4. 60)—(10. 4. 63) of Ref. 12we get from condition
(2.5) to first order in o?/%/¢

Using the definition of ¢,, ¢ and condition (b) we get
as the result for this case

&V2=pr/L, (2.14)

which is equivalent to the case of free electrons in
an infinitely deep well, as expected.

This complete solution for a free electron in a
finite-range electric field is, to our knowledge,
presented here for the first time.

III. MATHIEU-TYPE CRYSTAL IN AN ELECTRIC FIELD

We treat here a one-dimensional “crystal” whose
periodic potential is a simple cosine function sub-
jected to an external electric field. Before con-
sidering this case it is instructive to recall some
concepts of the case of an infinite “crystal” with
this type of periodic potential in the absence of the
electric field which was treated by Slater. '°

In the zero-field case the Bloch electron behaves
according to the following Schrodinger time-inde-
pendent equation (Mathieu-type differential equa-
tion):

[p%/2m + 2W,(1 — cos2mx/d)]@(x) = €ge(x) , (3.1)

where d is the lattice constant and 4W; is the height
of the periodic potential in energy units. The
minima of the periodic potential occur at x=nd,
n=0, +1, +2, .... The solutions of (3.1)are ex-
tensively discussed in Ref. 15 where it is shown
that the eigenvalues for the energy do show many
properties of a real crystal, e.g., they appear in
bands of allowed levels separated by gaps of for-
bidden levels. The results were obtained under
boundary conditions at infinity, namely, that the
function in momentum space (in fact, the Fourier
transform of the Wannier function of the problem)
falls off exponentially at x=+«, The eigenfunc-
tions, except for the charge distribution in mo-
mentum space which depends strongly on the shape
of the potential (see Ref. 15, p. 818), show also
many features of real crystals. Recalling in addi-
tion that the form of the potential in (3. 1) can al-
ways be seen as the first terms in the expansion of
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the real potential, we see that it is reasonable to
treat such a model and expect to get results which
are close to the natural ones.

We therefore treat here this type of crystal with
two additional changes. The first is that we take
a finite crystal (and thus we are able to check the
influence of boundary conditions on the problem)
and the second is that we add the potential eEx to
the periodic one, to represent the external electric
field. The differential equation we deal with is

[p%/2m + 2W,(1 = cos 2mx/d) + eEx]¥(x) = €¥(x) .
(3.2)

In order to have a connection with Slater’s re-
sults for the zero-field case, we transfer to new
nondimensional variables, and get

@2V/dw?+ (u+% Scos2w)¥ - awl =0, (3.3)

where
w=nx/d, S=32Wymd?/n?, u=&'SV%-%s,

€' = 2m/ W) %ed/h, a=2md*/n3m® eE
[compare with Eqs. (9)-(11) in Ref. 15].

In order to obtain a feeling for these variables,
let us calculate a specific example: Suppose we
have a crystal with d=5 A, then %%/2md®=0.125
eV, S=3.2W, (eV) measures the potential height (if
we stay with the same d). As W, gives an approxi-
mation to the énergy gap (say by the tight-binding
approximation), then if we want the latter to be of
the order of 1 eV we need S of the order 1. a=~1.3
x108E (V/cm) measures the field intensity. For
big fields, say 10° V/cm, a is of the order of 1073,
As we shall see later, for the sake of band broad-
ening, the important parameter is the voltage drop
over the sample and not merely the field. Hence
a better parameter to consider is perhaps avL/d
= anN, where L is the length of the crystal (L =Nd).
€’ ~0.4eW;Y/2, where the units are in eV for ¢ and
W,. Conversely, from the results we get for €,
we can retrieve € by €=2.5VW€’.

As boundary conditions (BC), we use the follow-
ing three types:

(i) Infinitely high potential well. Our crystal
stretches between 0 and L, so these BC are equiva-
lent to ¥(0)=¥(L)=0.

(ii) Finite potential well. We assume that for
x<0and x>L, V=V, and that, dealing with bounded
states, we have €< V. In this case the solutions
outside the crystal are decreasing exponentials:
¥(x=0)=Ae®*, ¥(x=L)=Be** where
a=[2m(Vy-e)/n2]}/2,

Thus these BC are equivalent to

Z—‘I’(o)—‘&qf(o)=o , Y@ysawm)=0. (3.49)
x 9x
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(iii) “Periodic” boundary conditions (PBC). As
has been discussed earlier, 8 the full periodic BC,
i.e., ¥(x+L)=¥(x), although appropriate for the
crystal without the field, does not give a solution
at all for the E+#0 case, and in this case we can
use only the appropriate PBC, namely,

o ¥
¥(0)=¥(L), -3;(0)— Py (x. (8.5)

These three types of BC are special cases!! of the
“homogeneous BC” for which there exist solutions
with allowed eigenvalues and eigenfunctions.

Several results can be predicted at this stage.
Considering Eq. (3.2), we see immediately that
there exist two well-defined limiting cases.

The first occurs when E is zero or very small
(in fact, the potential difference, and not the field,
should be very small). In this case we have the
problem discussed by Slater, !* namely, the Mathieu
equation, except that we treat a finite crystal and
thus will be able to see the influence of the different
BC. As mentioned in Sec. II the only case in which
we can have a degeneracy of the eigenfunction is
type (iii), consisting of adifferential equation with
periodic coefficients and PBC.® In the other cases,
we expect no degeneracy, even thoughthe coeffi-
cients are appropriate, asthe BC are not adequate for
that. Itfollowsthatwe canhave “current-carrying
states” only for the type (iii) using the following
argument: Having a real one-dimensional second-
order differential equation, if we do not have a de-
generacy for a certain energy, the solution (we
have only one in this case) can always be chosen to
be real, and the current operator

%
JzL(w*ﬂ_w&)

dx 9x (3.6)

will obviously be zero. This argument means that
in order to build Bloch states (which are current-
carrying states) we need in this case a finite one-
dimensional crystal, a PBC. Thus it is evident
that the eigenfunctions are very sensitive to the
form of the BC. On the other hand, for the eigen-
values the situation has not been completely clear.
For the case of lattice vibrations, there exists a
proof'® that the effect of BC on the spectrum is neg-
ligible. It was inferred (though without a rigorous
proof) that the same negligible dependence on the
BC would also be valid for the electronic spectrum.
In Appendix D, we extend the above-mentioned
proof!® to this case of electronic states in crystals
and the results do agree with the above-mentioned
previous predictions. Having at our disposal the
Mathieu-type model, we will be able to verify these
results also in a quantitative way. In fact, from
Appendix D, we have three upper limits for the
changes in the spectra with the differing types of
BC for this model, and these will be verified with
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FIG. 3. Discrete energy levels in the zero-field case.

€’ is in nondimensional units; see Eq. (3.3). Left-hand
side: effect of BC on the spectrum (lowest band and part
of next band); R,, infinite well; R,, finite well; R,, PBC
[Eq. (3.5)]. Right-hand side: €’ vs % for the periodic
case; degenerate levels appear twice, for kd and for
2m—kd.

the numerical results.

The second limiting case we have is when E is
very large (eEL—which turns out to be the impor-
tant parameter—Ilarge compared with 4W,). In
this case we can neglect the effect of the crystal
field and we have the problem of a “free” particle
in a finite electric field. This is the Airy problem,
discussed? extensively by mathematicians. Here
again the problem explored in the past is the in-
finite one, where we know that there are solutions
for every energy: Those which vanish at +~ are
the Ai’s and the second solutions which increase as
e*®/2 at + are the Bi’s. The problem of the finite-
range empty crystal in an electric field is dealt
with in Sec. II, and, as was shown, we get only
discrete allowed energies ranging from 0 upwards.
These levels occur, for low energies, at approxi-
mately ¢, = (7%/2m)!/3(Ee)?/%g,, where g, are the
nodes of Ai. They behave approximately propor-
tional to (n—%)?/% [see Fig. 2 and Eq. (2.7)]. Here
we expect to get this behavior for the large E’s when
the term with the field in (3. 2) is the dominant one.
In this case the crystal manifests itself only through
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the BC. It is perhaps worthwhile to note that we
solve for the electrostatic finite case and so do not
expect to get (for large E) a behavior of a “free”
electron in an electric field, but that of an “empty
crystal, ” with no current.

In the numerical calculations several crystal
lengths and the three types of BC [(i)-(iii)] were
tried. The eigenvalues and eigenfunctions were
obtained both with the field and without it. Some
details of the numerical calculation appear in Ap-
pendix C.

For the zero-field case, we use Bloch theorem
for type (iii) BC, a theorem which in this case is
equivalent to that for an infinite crystal. This
theorem states that there exist solutions to the dif-
ferential equation having the property

¥, (x+d) =™, (x) ,

where k=2rm/L; m=0, 1, ..., N-1 are the quasi-
momentum vectors of the first Brillouin zone, and
the fact that there exist only N allowed values for
k stems from the BC (we need ¢*f'=1). Figure 3
gives these results for the “undisturbed” crystal.
It is interesting to note some of the features, es-
pecially those concerning the BC predicted above.
First, we see that the only degenerate case is the
one with type (iii) BC, which can be interpreted
as following from €(k)=e(- k) in the Bloch picture
of the problem: The only levels which are not de-
generate in this case are the extreme ones, per-
taining to =0, 27/d (i.e., the ends of the Brillouin
zone). We know from the mathematical analysis'?
that the second (independent) solution of the equa-
tion in this case diverges. Second, the number
of levels in a band is seen to be N, agreeing with
the N allowed values of m as discussed above.
Third, the change in the number of eigenvalues in
any interval is seen to obey the result obtained in
Appendix D, namely, that this change is at most 1
between types (i) and (iii) and at most 2 between
(i) and (ii). Next, we observe that the range
(around the extremum) of validity of the %% propor-
tionality of the spectrum € [a formula we shall use
in Sec. IV when we deal withthe effective-mass ap-
proximation (EMA)] is much larger for the lower
band than for the upper band. This implies that
the EMA in its simplest form [where we use
— (7%/2m*)v? as the approximate operator which
takes into account the periodic potential] will apply
for a larger range in the upper band.

The effect of the length of the crystal on the dis-
tribution of levels was negligible as seen in Fig.
4, where crystals of 10, 20, and 60 unit lengths
are compared. Except for a change in the number
of levels in a band according to N, there are no
noticeable changes in the “spectrum.” This fact
can be easily understood since by Bloch’s theorem
[suppose we deal with type (iii) BC] for a crystal
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FIG. 4. Plot of energy levels [in the nondimensional
units of Eq. (3.3)] for the zero-field case for the type
(i) BC vs the number of the state » for three lengths of
the crystal: N=10, 20, 60. (N is the number of unit
cells in the crystal and also the number of levels in a
band.)

of length L, every solution has the form

Uy, s(x+d)=e'®™/ly, (x), my=0,1,...,N;=1.

Now, consider two crystals of lengths L and pL
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accordingly, where p is an integer. There will be
N solutions for the first one with m=0,1,...,N-1
and pN solutions for the second [m'=0,1,...,
(pN—-1)]. Those solutions for the second crystals
which have m'=pm will have an identical differential
equation and an identical BC (on a unit cell) and

thus an identical solution. (This is the case for
zero field, but in the presence of the field the situa-
tion is obviously different since for E #0 the Bloch
theorem is not valid.)

With the application of the field, the distribution
of levels changes. Figures 5-7 show what hap-
pens. These give the energy as a function of #, a
number monitoring the levels, beginning with the
lowest. For the zero-field case this number has a
direct connection with % (see Fig. 3 and Sec. IV),
while the concept of % loses its meaning in the case
of the crystal in the field.

For S=1 (small periodic potential height and thus
small energy gap), Fig. 5 shows several interest-
ing properties: It is seen that the “beginning, ”
i.e., the lowest part, of each band changes very
slightly, while the upper part (in this case of the
first band) increases with the field. This increase
for small fields seems almost proportional to E.
The same calculation was carried out for crystals
of different lengths and the increase was propor-
tional to the length. The outcome indicates, of
course, that this increase is approximately propor-
tional to the voltage drop across the crystal, a
result which can be obtained analytically for the
EMAY (see also Sec. IV). The net result of the
very small increase in the beginning of the upper
band and the increase in the “top” of the lower
band is that the forbidden energy gap is decreased
with the voltage. A similar behavior is seen (Fig.
6) for S=5 (relatively high periodic potential), ex-
cept that there evidently the influence of the voltage

ool l 0

FIG. 5. Energy spectrum changes
with respect to the electric field. The
band gap is between levels 19 and 20.
S[the parameter measuring the crys-
tal-field strength; see Eq. (3.3)] is
small (=1). o measures the electric
field strength; see Eq. (3.8). The en-
ergy (¢') is measured in the nondimen-
sional units of Eq. (3.3). The voltage
drop (V) on the sample in the same
units is given by V=207a (e.g., for
a=5%10"3 we have V=0.314; compare
with the zero-field energy gap 0.68 in
this case).
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(s=5)

° a=j02

%

FIG. 6. Energy spectrum changes with the field for
a relatively high (S=5) crystal potential (high-energy
gap). € in the nondimensional units [see Eq. (3.3)].

drop on the crystal is smaller than that for S=1,
the relevant parameter being the ratio of this volt-
age drop to the forbidden breadth.

The density of states changes too. For E=0 we
have a distribution of states which is approximately
parabolic near the edges of the bands, a fact stem-
ming from Bloch’s theorem. For very high fields
(in the sense of high potential differences with re-
spect to the gap or the periodic potential barrier)
the crystal field is negligible in comparison with the
field-containing term and we have an approximate
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finite Airy problem. The eigenvalues for this
problem with type (i) BC and for energies which
are not the lowest in the band are given (in Slater’s
units) by

€ SY2/a? 3~ [3n(an-1)P/°. (3.4")

Figure 7 gives the comparison for the energies of
the finite crystal in high electric fields with the
right-hand side of (3.4’). The convergence to the
right-hand side is apparent.

Absence of the Stark ladder effect is striking
in all the results (Figs. 5-7). In our calculations
it categorically does not appear. The arguments
for its appearance would have predicted a set of
evenly spaced discrete levels ranging over the
whole spectrum in the presence of the electric field.
No such levels are seen. The discreteness of the
spectrum in our treatment comes from the finiteness
of the sample and has nothing whatsoever to do with
the Stark ladder arguments. For strong field this
discrete-level structure can perhaps be detected
experimentally.

Now let us turn to the eigenfunctions. In Fig. 8
the eigenfunctions for the zero-field case for type
(i) BC are given. It is seen that for the lower part
and the upper part of each band, in agreement with
the EMA?®® (see also Sec. IV), they behave like a
product of two functions. One is the usual Mathieu
function!? which is the solution of this equation (3.1)
at the bottom (or top) of the band and the other
comes from the “well” with the PBC, and consists
of sines or cosines. For the first band, the ap-
propriate Mathieu function is cey(z), the structure
of which is seen in Fig. 20.2 of Ref. 12. We see
there that this function does not have any nodes in

€ o ¢
¢S
High-field spectrum
(s=1)
FIG. 7. €' (in the nondimensional
B units of @?/3/51/?) vs » for high fields.
The full line is the empty crystal in
an electric field case [the right-hand
side of Eq. (3.4)]. As the field in-
18.017 . . creases from a=10"1to @ =2x%10"! the
empty erystal spectrum approaches the full line.
o a=10"
10.0f ® a=2x10"
0.0
1 1 1
0.0 10 20 30 n
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FIG. 8. Wave functions for a finite-range crystal with
no electric field (¢ =0); type (iii) (periodic) BC. Several
functions belonging to energies in the lower and upper
parts of the first band, and in the lower part of the sec-
ond band are shown, as well as several eigenfunctions
from the middle of the first band. The lowest and the
uppermost levels in each band are nondegenerate while
the others are doubly degenerate (pertaining to kd and to
21 —kd).

the whole interval. In fact, by Eq. 20.2.27 there
we can calculate the ratio of the highest value to
the lowest value of this function during a single
oscillation. For small ¢ (which in our notation is
equal to 1 S), we have

(3.5")

For S=1, the change in amplitude in one cycle is
of its maximum. Consider now the first eigenfunc-
tion appearing in Fig. 8 (that for €'=0.4689). It
has as a multiplier the first function of the “well”
which is a constant, and thus the oscillations of the
other multiplier, namely cey(w), are observed. It
is evident that the oscillations are approximately §
of the height of the function, in agreement with
(3.5'). Thenextlevel (¢'=0.4787) is degenerate,
and we have cos(2n/L)w and sin(2r/L)w multiplying
the Mathieu function. Again the oscillations con-
stitute about ; of the height. The two degenerate
functions can, of course, be combined to give the

ceylz, q) ~21%(1 - § gcos2z) .
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Bloch-type traveling waves to the right or to the
left (which are degenerate too).

This “effective-mass” interpretation of the be-
havior of the functions can go on for the next sev-
eral values of €’. Then, for higher states, the
functions become more complex, but even here one
can still perceive, albeit vaguely, the “product”’—
EMA behavior. Starting now from the top of the
first band (¢'=+1.2423), the level is again nonde-
generate, and the Mathieu function multiplying the
cosine function [cos(2r/L) wx3 N=cos(rw/d) = cosw
in our choice of units] isthe off one: se,. That we
have indeed this kind of behavior can easily be seen
by noting from Eq. 20.2. 27 of Ref. 12 for small ¢

3.7

Thus the product is sinz cosz=3 sin2z, and we note
that the number of oscillations in the whole length
of the crystal is one-half of that for ¢’ =0. 4787

(10 instead of 20). In fact, we have a change of
origin from (3.7) because the “well” function is an
admixture of sinw and cosw. The same product
behavior discussed above is seen for the first sev-
eral functions when we start from the top and go
down in energy, e.g., for €'=1.1819 the function
behaves like c0s0. 9w or sin0. 9w times se,(w)
~ginw. The same argument applies for the begin-
ning of the upper band, the appropriate Mathieu
function now being ce;(w).

Turning now to the case where the field is pres-
ent, we see in Fig. 9 the situation for a moderate
field (a =102 or V=~0.6, which is of the order of
the band gap). There is no longer any degeneracy
because the coeifficients of the differential equation
are not periodic. The label for the energy eigen-
values is now simply n=1,2,..., as now there is
no meaning to the wave vector 2. We see that here
too the graphs can be interpreted qualitatively with

se,(z, q) ~sinz .

(e 5663 ll\ ‘ . L\/‘\ J h/\ J
RS v W

€=,6463 =711 €=.76%4

Wl M S

€=1.4824 €=1,5679 €=1,6899 €=1,9451

i i

€:2.0888 €=2.1848

FIG. 9. Several wave functions of a crystal in the
presence of a finite-range electric field (a=0.02); type
(iii) BC. Again (as in Fig. 8) only functions belonging to
energies in the band edges plus some belonging to the
middle of the first band are shown. The degeneracy is
lifted by the field, thus all levels are nondegenerate.
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Ai(x)

The Airy function Ai(x)

-4}

FIG. 10. Airy function Ai(x) as a function of x. The
two types of behavior, oscillatory for x <0 and exponen-
tial (e**/? for x >0, are manifest.

the help of the EMA. The first graphs in Fig. 9
strongly resemble a product of cey(x) (which we
discussed above), with another function, except
that now this second function is an Airy function
consisting of a linear combination of Ai and Bi, such
that the function fulfills the type (iii) BC. Such a
function (see Sec. II) is almost identical to Ai along
most of the interval 0—-L (the contribution from Bi
becomes noticeable only in the immediate vicinity
of x=L). We can compare the behavior in Fig. 9
with that of a simple Ai function (Fig. 10). The
boundary condition [type (i), say] on the left-hand
side means .(Sec.  II) that the comparison should
start from a node of Ai. The other limit (x=L) is
a length L to the right of this node (which is labeled
x=0). In our case for a small number of nodes of
Ai (the starting point moves so as to include more
nodes for higher levels) in the interval 0-L, L is
large, and so the comparison can be made with Ai
between — g, (node No. s)and ©, Thus for
€'=0.5663 in Fig. 9 we have approximately the Airy
function with no nodes multiplying cey(w), etc.

Now, we still retain (even for such a comparatively
high field) the EMA behavior near the forbidden
gap. For ¢'=1.5899 and ¢’=1.9451, the two ends
of the energy gap, we have again an Airy function
of no nodes modulating the Mathieu function se,

and ce,, respectively, as for the case with no
field). The difference between the modulating func-
tions in the two sides of the band gap is that one
Airy function goes from left to right while the other
goes from right to left because the effective mass
in the upper limit of the lower band is negative.
This is discussed thoroughly in Ref. 17 (see also
Sec. IV of this paper). Going in both directions
from the ends of the band (from 1. 6899 down in en-
ergy and from 1.9451 upwards), the EMA behavior
is seen to persist for a while, Airy functions with
increasing number of nodes appearing sequentially
as we go away from the band-gap boundaries.
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IV. DIRECT AND EMA-TYPE CALCULATIONS OF ENERGY
EIGENVALUES

The invalidity of the EMA for the time-indepen-
dent solutions of the infinite crystal in an external
electric field'® can easily be shown?® by the following
argument: The EMA states that the eigenvalues and
eigenfunctions of the Schrodinger equation in the
presence of a perturbation by a “gentle potential” *®
can be obtained by solving the effective equation,
in which the periodic crystalline potential does
not appear and instead the mass parameter is
changed. In the proof of the validity of this approxi-
mation it is required®® that the Fourier transform
of the functions which are the solutions for this
“effective Schrédinger equation” be such that it
would be possible to represent the function by a
small number of k vectors or, to put it differently,
that the volume in k space needed for the develop-
ment of that function be much smaller than the
volume of the Brillouin zone. Now, for the infinite
one-dimensional crystal, the Fourier transform
of the appropriate function, namely the Airy function
Ai(x), is given®! by

: 1 ® kxRS
Ai(x)= —f e et /3 qp (4.1)
2m /.
and no range of 2 can be discarded.

For the finite crystal, however, this is no longer
true, and in fact it can be proved!? that for volt-
ages small compared to the band gap, the EMA can
be valid. In the Mathieu-type model we compare
numerically the accurate results with those of the
EMA for the energy levels. Our results are given
in nondimensional variables of Slater type and in
order to facilitate the calculations with the EMA we
formulate it in a different way, a way which may
be of help in more general cases: Suppose we have
an equation

v

2;2' (4.2)

~[V(x)+ U(x) ¥ +€¥=0,
where V(x) is periodic with a period d and U(x)
is a “gentle” potential, and with BC given, say,
at x=0and at x=L=Nd. We can get an approxi-
mate solution to (4. 2) if we know the solutions for
the “unperturbed” equation
2

T~ Vg -20=0 4.3
with the same BC, provided the energy spectrum
consists of allowed bands separated by forbidden
gaps and inside each band the eigenvalues depend
quadratically on #, the level-number parameter,
i.e., §,=¢y+qn’, where §,, €, pertain to the same
band. Now, if the EMA is valid we can get a solu-
tion to (4.2) by considering instead the effective
equation
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FIG. 11. Exact and EMA-type spectra for three dif-
ferént fields, @ =2x%10"%, 5x107%, 2%102, The bands are
arranged here such that the » =1 levels will be those (for
the upper and lower bands) levels which are closest to
the gap. Only the first few levels (1<z <8, 10) are
shown. The EMA is seen to hold for moderate fields al-
most till the middle of the bands. €’ is in the nondimen-
sional units of Eq. (3.3).

2
Z}Z—xzé— U(x)x + (€ = €5)x =0 (4.4)
with the same BC, where g=¢q(L/2r)?. This for-
mulation of the EMA can be obtained from the usual
form simply by multiplying (4. 2) by - %%/2m and
by using the definition of 2, namely k&, = (2rn/L).
The curvature g is equivalent to m/m* in the usual
form of the EMA.

In our problem the period d is 7 [see (3. 3)],
L=Nr; €=S"%¢’., We solve (3. 3) numerically for
a=0 and get the spectrum. From the behavior of
€’ with the level number » we derive ¢, and (4.4)
will become (for N=20)

dz
100q%§ - awy+SM2%ey =0 (4.5)
with boundaries w=0, w=207. ¢ is measured with
respect to the unperturbed case. This again is an
Airy-type equation. The solutions for positive g

are
\Pi(allaw €sl/z )
: 5-1/3 ?I-llsam ’

where Vi is a linear combination of Ai and Bi, such

(4.6)
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that the BC are fulfilled. If we demand, e.g.,
type (i) BC, then for the upper band this gives ap-
proximately (see Sec. II)

€s= g+ (a?3/8Y2)q 1 3o, (upper band),
(4.7)

where g, are the places where Ai(x) has nodes.

For the lower band, ¢ is negative, say = - p,
and instead of (4.6) we get as the solutions of
(4.5)

( eSVz  gl/3y,
i 11736278 = 173 > ’

(4.5)

which is the same function as (4. 5) only going from
right to left. Now the BC at w=0 is approximately
fulfilled for high-enough energies by the e"‘S/z-
type decay of Ai(x) for positive arguments, while
the BC at w=L gives here

al “1/3(!2/3

€&=€+ 517z TSz &s (lower band) .

(4. 8)

Now we can compare these approximate solutions
(4.7) and (4. 8) tothe EMA equation with the exact
eigenvalues obtained by solving the original equa-
tion (3.2). The results for S=5 (which has a better
parabolic behavior than S=1) appear in Fig. 11.
Although the original equation was carried out for
type (iii) BC and the EMA for type (i), we see a
very good fit for the two ways of calculation for a
considerably large part of the bands, except for
high electric fields (for a=2x10"? the voltage dif-
ference across the sample, namely, aL/S/? is
approximately one-half of the band gap). This
quantitative result, combined with the foregoing
qualitative discussion of the wave, provides a very
good example for which the EMA is a very good
approximation for an electron in a finite crystal
in an external electric field.'"

V. DISCUSSION

The empty-crystal calculation in the presence
of an external constant electric field leads to a
number of interesting results. It is shown that the
non-Fourier-transformable second solution cannot
be ignored (in the finite case) and gives rise to a
completely different spectrum than in the infinite
case. The eigenvalues have a lower bound and the
high-energy solutions merge smoothly into the zero-
field spectrum as they should.

The empty-lattice treatment indicates already
that the influence of BC is crucially important in
the “field” case. This trend is enhanced in the
model calculation of Secs. IIIl and IV. Considering
the cases with and without the external field, we
see that the situations are quite different. Without
the field, if we add to the finite crystal another
similar one, we can continue the physical param-
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eters, which in this case are the potentials, con-
tinuously into the second crystal and get a reproduc-
tion of the first; whereas for the external-field

case the length of the crystal is connected with the
existence of a parameter, namely, the electric
potential difference on it, which is of a distinct
type. This parameter does not reproduce itself
upon a repetition of the crystal, and in fact goes

to + « for inifinte crystals.

The numerical treatment of the Mathieu model
has enabled us to get a clear and well-understood
picture of the features of the problem. A large
amount of useful details were brought forth. Con-
cerning the eigenvalues the physical properties
emerging were the following: (a) a linear decrease
in the band gap with the voltage drop on the crys-
tal, a decrease which may be responsible to the
“electro-optic” effect; (b) a change in the density
of states with the field, which for small voltage
differences can be described by the EMA; (c) a
complete absence of the formerly predicted Stark
ladder spectrum. As important side results which
were derived, let us mention the numerical veri-
fication of the extension of the BL theorem concern-
ing the influence of BC on the spectral density
and the partial answer to the question: “What is the
minimal number of unit cells which can be called
a crystal?” It is obvious that a number of the
order of 10 is a lower bound. As for the eigenfunc-
tions, the complex influence of the crystal field
and the external electric field was shown. This
intermingling was explained, for the range of eigen-
values near the band extrema, qualitatively by the
EMA, while for other eigenvalues the behavior is
more complex. Having calculated the energies and
the eigenvectors, the whole problem of the dy-
namics for this model is in principle solved. In
future publications we shall expand on this and try
to calculate other properties of this model.

Finally, we should point out that several applica-
tions of the general treatment are now under study:
the EMA to the energy eigenvalues and eigenfunc-
tions and its validity!”; calculation of optical ab-
sorption in the presence of the field and the Franz-
Keldish effect; Zener breakdown, and others.
These are subjects for future publications.
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APPENDIX A

A simple physical approximation to obtain the
dependence of ¢, on #, Eq. (2.8), is the following:

A. RABINOVITCH AND J.

ZAK

| v

Suppose (Fig.1) we solve a case of an equivalent
square well, having a length /, which is given by

€, and the electric field
eEL=¢, . (A1)

The well-known result for the energy levels of the
square well is

n? (2mn\2 KR P
‘"'2m(z>‘2mif . (A2)
If we substitute / from (A1) we get
n2e? \1/3
€"=<2m) n2/3E2/3, (A3)

which has the same dependence on » and E as in
Eq. (2.8), but with a different constant.

APPENDIX B: NORMALIZATION OF WAVE FUNCTIONS
We have
¥=C[Ai(Z)+B8Bi(Z2)]=C¥
if we demand
S le@2ax=1
or

f2 dz
1=/ |\I/(Z)|2 73 >
-ty ay

(B1)

where ¢, =&/al/®and #,= o}/3L - ¢,. Integrating by
parts, ® remembering the differential equation,
namely,
a*y
az?
we get
c=al’%D,
where

X 2 T 2
I)2 = tz@z(tg) + t1i’z( - tl) - <§'§_ (tz)) + (Z-—;_I ( - tl)) M
Using (2. 3), which for ¥(Z) reads
U(t,)=w(-1#)=0,

=z¥(2),

(B2)

we have

B d_§ 2 -d\i )2}1/2
D"[<dz(—t1)> "(dz (tz) .
For case (a) in Sec. IJ,

z= (ta)” - ﬂ'llzté“exp(—%tg/z)

[using (2.11)], and for &}/°L>>1 this term is very
small and can be neglected. At —¢,, 8Bi(-4¢) is
much smaller than Ai(-4), thus D=~dAi/dZ| ,,.
For large n, we have (by 10.4.96, 10.4.105 of
Ref. 12)

D,=(-1y[$n(dn-1)P/3

. and
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C,~al/8/(3m)'3 .
APPENDIX C

The numerical solution of (3. 2) was carried out
by transforming it (see Eq. 4-J-12, Ref. 22) into
a difference equation. We used four crystal
lengths, L=10d, 20d, 60d, 100d, divided into M
small intervals. Two independent initial-value
solutions were constructed for every value of the
energy parameter ranging over the interesting re-
gion

¥,(0)=0; ¥,(1)=1; ¥,(0)=1; ¥,(1)=0. (C1)

The solutions ¥,(m), ¥,(m)are calculated from (3. 2)
and (C1), up to the other end point. Now we have
to satisfy the various BC. To satisfy condition

(i) is the simplest. We look for those energies

for which ¥,(M)=0. To satisfy numerically condi-
tion (iii) we need to build a function

¥(n) =y ¥,(n) + B ¥,y(n) . (C2)
such that
v(0)=v(M), ¥Q)=¥(M+1). (c3)

Inserting (C1) and (C2) in (C3) we get two homo-
geneous algebraic equations, which have a solution
only if the determinant of the coefficients vanishes,
i.e.,

v, (M) V(M) -1
O, (M+1) -1 ¥,(M+1)

Now we use the fact that the Wronskian of (3. 2)
(which is a Sturm-Liouville type of equation) is a
constant. In the discrete case, that is equivalent?®
to

=0 . (cq)

‘1’1(71) ‘I’z(n)
Uin+1) n+1)

The last result comes from (C1). With (C5) we get
from (C4) that in order to fulfill condition (iii) we
must have

R,=¥,(M+1)+¥,(M)-2=0.

=const=-1. (C5)

(ce)

We change € until condition (C6) is satisfied. By
a similar method we have that condition (ii) is ful-
filled if we demand

R,= ‘I’z(M+ 1)+ (u- 1)‘I’2(M)

+ QA+ w)¥(M+1)+ 2 -1)¥,(M) =0, (o4)]

where u="aohd/m; h=Nn/M is the numerical incre-
ment.

We used a constant value for @, ad/m=3. This
is equivalent to having a fixed (V, - €) of approxi-
mately 11 eV in the above example, and is a slightly
different case from that discussed previously. It
is analogous if € << V,, and for higher energies
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similar to increasing the height of the walls. Two

values were used for S: S=1 and S=5.
APPENDIX D

The BL theorem states that the distribution of
eigenvalues for the frequencies of lattice vibra-
tions changes very slightly with a change in BC.
The proof is based on a theorem by Cauchy, '® from
which the following intermediate theorem (7) is
obtained in Ref. 16: “If in a finite Hermitian ma-
trix, the elements of » rows and their correspond-
ing columns are modified in any way whatever,
provided only that the matrix remains Hermitian,
then the number of latent roots which lie in any
given interval cannot increase or decrease by more
than 27.” The original proof'® goes on to show the
validity of the above-mentioned BL theorem. We
use theorem T in order to show that for the simi-
lar case of the electronic energy eigenvalues for
a finite crystal, with or without external fields,
the exact form of the BC has a negligible effect on
their distribution. We use the notation for a one-
dimensional crystal with a length L in an electric
field, but the same treatment applies for the gen-
eral case of a self-adjoint equation.

We treat a differential equation of the form

“ 2
fow = 1Y

2t (D1)

W(x)¥(x)+e¥(x), 0=x=L.
We assume that (D1) can be transformed into a
difference equation. Note the following: (a) A
numerical solution of (D1) is always carried out in
this way, the range of x being finite. (b) The fol-
lowing arguments do not depend on the number of
intervals we divide L into, so this number can be
made to tend to infinity. (c) The exact difference
scheme is immaterial provided # remains Her-
mitian. We can, for example, use for the second
differential d*¥/dx? the second difference
(1/m?)(¥,,; + ¥,., - 2¥,), and get

ot = (1/K2) (¥, + Wo_q — 2¥,) + Wnh)¥(nh) = €¥(nh) ,
(D2)

where 1=n=M-1; h=L/M is the length of the in-
terval. This can be written as

Upoy + ¥y + (A, - €)%, =0 . (D3)

We cannot write the equations for »=0, M without
knowing the BC. From the operator alone we have
a system of M -1 equations in M+ 1 unknowns (the
¥,’s). Adding the BC gives a system of the same
number of equations and unknowns, the solution of
which is given by finding the latent roots of the ap-
propriate secular equation. Using self-adjoint BC
[as, e.g., those we use in this work, nam'ely, the
types (i)-(iii), above] does not change the Her-
miticity of the secular matrix. Moreover they
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can influence at most the two last rows and corre-
sponding two last columns. Thus we can use
theorem T to get that the number of energy eigen-
values which lie in any given interval does not
change by more than four. As mentioned before,
increasing M does not change the argument.

In applying the above for our case, we can re-
strict the change in the number of eigenvalues even
further. First, we show that this change between
types (i) and (iii) can be at most one: On using
¥,=0 and ¥, =0 we get that the first (»=1) and last
(n=M - 1) equations will transform into

\I’2+(A1'-€)\I’1=0 )
Vyo+ Ay =¥y ,=0,

and we get a set of M -1 homogeneous equations
with M -1 unknowns. While using BC type (iii),

(D4)

namely, ¥,=¥,, ¥, =¥,, we getfrom the first
equation ¥, + (A, — €)¥, + ¥,, =0 and there will be an
M equation reading ¥, , + (4, — €)¥, +¥,;=0. Thus
in case (i) the secular matrix is a leading minor

of the secular matrix of case (iii). But the change
in the number of eigenvalues, in any interval be-
tween a matrix and its leading minor, cannot be'®
more than one. Now in case (ii) we get for the equa~-
tion for n=1

U, + (A, +p)¥,=0
and for the M -1 equation
Vyp+ (Apy +0)¥y1=0,

where p=(1+an)™, p’=1~ ak. Thus the change
between cases (ii) and (i) (using the above theorem)
can be at most two.
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